

KEPLER'S LAWS ANSWERS

TASK 1: INVESTIGATE KEPLER'S 3RD LAW

1E+10 1E+09

- The data points plot in a straight line.
- The line of best fit has an R² value of 1. This tells us there is a strong relationship between the 2 variables.
- The squares of the orbital periods are directly proportional to the cubes of the semimajor axis.

TASK 2: APPLY KEPLER'S 3RD LAW

$$T^{2} = \frac{4\pi^{2}}{GM} a^{3}$$

$$T = \text{ orbital period}$$

$$a = \text{ semi-major axis}$$

$$G = \text{ gravitational constant } (G = 6.67 \times 10^{-11} \text{ m}^{3} \text{ kg}^{-1} \text{s}^{-2})$$

$$M = \text{ mass of the Sun}$$

T = orbital period

M =mass of the Sun

Rearrange the equation to make M the subject:

Step 1

Step 2

Step 3

Divide both sides by a³

Multiply both sides by M

Divide both sides by $\left(\frac{I^2}{a^3}\right)$

$$\frac{\mathrm{T}^2}{a^3} = \frac{4\pi^2}{GM}$$

$$M\left(\frac{T^2}{a^3}\right) = \frac{4\pi^2}{G} \quad M = \frac{4\pi^2 a^3}{GT^2}$$

$$M = \frac{4\pi^2 a^3}{G T^2}$$

Work out the value of M. Express your value to 3 significant figures, using scientific notation:

	Mercury	Venus	Earth	Mars	Jupiter	Saturn	Uranus	Neptune
Calculated value of M (kg)	1.99x10 ³⁰	1.98x10 ³⁰	1.99x10 ³⁰	1.98x10 ³⁰	1.98x10 ³⁰	2.01x10 ³⁰	1.99x10 ³⁰	2.01x10 ³⁰

The true mass of the Sun is $1.989 \times 10^{30} \ kg$. All your values for M should be relatively similar and close to this value