KEPLER'S LAWS FACT SHEET

PROPERTIES OF AN ELLIPSE

An ellipse has 2 special points called foci. If you measure the distances from any point on the ellipse to the 2 foci, the total distance is always the same.

The intensity of the elliptical shape is denoted by eccentricity (ε). Where $\varepsilon=0$ is a circular orbit and $\varepsilon=1$ is a parabolic orbit.

An ellipse has 2 axes. The longer one is called the major axis, and the shorter one is called the minor axis. Half of the major axis is called the semi-major axis.

KEPLER'S $1^{\text {ST }}$ LAW: THE LAW OF ORBITS

All planets in our Solar System orbit the Sun in an elliptical shape. The Sun is always at one of the foci of the ellipse.

KEPLER'S $2^{\text {ND }}$ LAW: THE LAW OF AREAS

A line drawn from the centre of the Sun to the centre of an orbiting body will sweep out equal areas in equal intervals of time.

KEPLER'S 3RD LAW: THE LAW OF PERIODS

The ratio of the squares of the periods (T) of any two planets is equal to the ratio of the cubes of their semi-major axis (a) of their elliptical orbit.

This can be expressed as an equation:

$$
T^{2}=\frac{4 \pi^{2}}{G M} a^{3}
$$

This equation is simplified slightly. It assumes the mass of the planet is negligible compared to the mass of the Sun.

